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Onset of intermittency in two-dimensional decaying turbulence
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The statistics of two-dimensional flow decaying from an initially Gaussian velocity field are investigated
both theoretically and numerically. During the initial stages of the turbulence decay, small-scale intermittency
develops, while the intermediate and large scales remain essentially Gaussian. Corresponding to these early
times, an expression describing the evolution of the shape of the probability densityP(V,S4) is derived from
the Navier-Stokes equations, whereV5v/vrms is the normalized vorticity andS4 is the normalized fourth-
order moment of the vorticity. Predictions of the theory, which does not involve adjustable parameters, agree
with the results of numerical simulations for the early-time decay.@S1063-651X~97!00304-8#
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I. INTRODUCTION

Although progress is ongoing, the understanding of int
mittency from first principles remains one of the major o
standing problems in turbulence theory. Intermittency in t
bulence is evidenced by scale dependence of the norma
even-order moments of the velocity differences@1#, where,
for example, the longitudinal velocity difference as a fun
tion of the displacement scaler is defined by
Dui(r )[ui~x1r î!2ui~x!. A flow is intermittent if
^[Dui(r )]

2n&/^[Dui(r )]
2&n is a function ofr . For turbulent

flows, the normalized even-order moments increase from
Gaussian values as the displacementr decreases. Intermit
tency is also manifested in the probability densityP(X) by
very broad tails for large values ofX whenX is a derivative-
related variable such as the vorticityv or dissipation-rate
fluctuationse2 ē. It is believed that the tails ofP(X) are
dominated by coherent structures. However, in three dim
sions, little is known about the formation of these structu
and their direct effect on the probability densities.

Decaying two-dimensional~2D! turbulence is character
ized by the emergence of coherent vortices. A typical
merical experiment deals with the Navier-Stokes equati
evolving from an initial conditionv~k,0!, usually corre-
sponding to a Gaussian random field with an energy sp
trum peaked at somek5k0 . It has been convincingly show
that the energy decay in this system is accompanied by
appearance of coherent, long-living vortices that eventu
dominate the dynamics of the flow~see, e.g.,@2–5#!. Since
coherent vortices cannot exist in a field which is Gaussia
all scales, their appearance must be accompanied by d
tions of the single-point vorticity probability density functio
~PDF! P(V,t) from the initial Gaussian distribution. Thus
in two dimensions, the formation of coherent vortices
likely to be responsible for the tails of the single-point vo
ticity PDF P(V,t) and intermittency.

The present investigation provides some quantitative
formation about the onset of intermittency for the case of
decaying turbulence. In this case, there is an extensive lit
ture on the subject of vortex merger and the long-time
namics~e.g.,@6# and @7#!. Here the purpose is to investiga
the statistical flow properties during the initial stages of
551063-651X/97/55~5!/5458~7!/$10.00
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decay from an initially Gaussian velocity field. The prese
work is thus different from previous studies dealing wi
much later stages of the evolution of the flow field, wh
almost the entire vorticity is associated with coherent str
tures@6# and@7#. Our numerical data show the simultaneo
development of small-scale intermittency, as measured
the normalized even-order moments of the velocity diff
ences, and excitations corresponding to the tails of
single-point PDFP(V,t). The~also simultaneous! growth of
the maximum of vorticity normalized by the root-mea
square value, reflecting a concentration of vorticity, sugge
that the physics underlying the onset of intermittency is
deed the formation of vortices.

In Sec. II we derive the PDF of vorticity in a periodi
domain, valid for short times during the decay of 2D turb
lence from an initially Gaussian velocity field. In Sec. III w
compare the theoretical PDF to the results of high-resolu
direct numerical simulations. It will be shown that the theo
and the simulations agree for early times, and the later bre
down of the theory is discussed. Moments of the veloc
differences measured during the simulations are also
sented in Sec. III as a direct measure of intermittency. S
tion IV describes a simple kinetic model for the growth
intermittency that is motivated by the results of the nume
cal simulation. This model is used to verify the approxim
tions employed in the derivation of the short-time PDF. T
limitations of the theory are further discussed in Sec. IV.
summary is given in Sec. V.

II. THE PROBABILITY DENSITY OF VORTICITY

A. The basic equations

To derive an expression for the single-point vortici
PDF, we apply the formalism developed by Sinai and Y
khot for a passive scalar@8# to the vorticity equation in 2D,

]v

]t
52u•“v1n¹2v, ~1!

whereu5u1~x1,x2!î1u2(x1 ,x2) ĵ , n is the molecular viscos-
ity, the vorticityv5k̂•~“3u! is a pseudoscalar, and“•u50
for incompressible flow. Multiplying Eq.~1! by v and aver-
5458 © 1997 The American Physical Society
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55 5459ONSET OF INTERMITTENCY IN TWO-DIMENSIONAL . . .
aging over the periodic domain, one finds the expression
the mean dissipation rate of energyē,

1

2

]v2

]t
[2 ē52n~“v!2, ~2!

where the overbar denotes the spatial average,v2[v rms
2 ,

and (“v)25“v •“v. Introducing the normalized vorticity
V5v/vrms and using Eq.~2!, Eq. ~1! may be written as

2
V

v rms
2 ē1

]V

]t
52u•“V1n¹2V. ~3!

We next multiply Eq.~3! by 2nV2n21 to find

22n
V2n

v rms
2 ē1

]V2n

]t
522nV2n21u•“V12nnV2n21¹2V

52u•“V2n1n@¹2V2n

22n~2n21!V2n22~“V!2#. ~4!

Defining two additional normalized quantities,y2

[(“v)2/(“v)2 anddt8[ēdt/v2, Eq. ~4! may be written
as

22nV2n1
]V2n

]t8
522n~2n21!V2n22y2

1
v rms
2

ē
@n¹2V2n2u•“V2n#. ~5!

Averaging Eq.~5! in space, and using the fact that the seco
and third terms on the right-hand side vanish for perio
boundary conditions~and homogeneous flows!, leads to the
dynamical equation for the even-order momentsV2n of the
normalized vorticity,

22nV2n1
]V2n

]t8
522n~2n21!V2n22y2, ~6!

where V2n5v2n/(v2)n. The main assumption of the ap
proximation developed herein is that the second term on
left-hand side of Eq.~6! is small compared to the other tw
terms during the initial stages of the turbulence decay fr
Gaussian statistics, and this assumption will allow us to
rive the short-time PDF of vorticity in closed form withou
adjustable parameters. Comparison of Eqs.~4! and~6! shows
that this assumption can be stated in dimensional terms~in-
verse time scales! as

U 1

v rms

]v rms

]t U@U 1

2nV2n

]V2n

]t U, ~7!

which is always true forn51 sinceV251 by definition, and
can be justified forn.1 by a near-Gaussian expansion of t
moments ofV. For a Gaussian field, the odd momen
V2n21 for n>1 are equal to zero, and the even mome
V2n for n>1 are constants, for example, the flatnessV4

53. Therefore it is plausible thatu]V2n/]t8u!u2nV2nu for
short times during the decay from Gaussian statistics.
or
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term ]V2n/]t8 will be carried through several more steps
the analysis for the purpose of deriving its correspond
terms in the equation for the PDF of vorticity.

At this point we introduce the joint PDF
P(V,y,t8)5P(V,t8)q(yuV,t8) and assume equivalence b
tween space and ensemble averages such that

Vm5E
2`

`

VmP~V,t8!dV, ~8a!

Vmy25E
2`

` E
2`

`

Vmy2P~V,y,t8!dV dy

5E
2`

`

VmP~V,t8!q0~V,t8!dV, ~8b!

whereq0(V,t8) is the conditional expectation value ofy2 for
givenV,

q0~V,t8!5E
2`

`

y2q~yuV,t8!dy. ~9!

In addition, we have the normalization relations

E
2`

`

V2P~V,t8!dV5E
2`

`

q0~V,t8!P~V,t8!dV

5E
2`

`

P~V,t8!dV51, ~10!

where the first and second conditions follow from the de
nitionsV[v/vrms andy

25(“v)2/(“v)2, respectively, and
the third condition follows from the definition of the PD
P(V,t8). From the assumption of equivalence betwe
space and ensemble averaging~8a!, ~8b!, Eq. ~6! may be
written in terms ofP(V,y,t8) as

22nE
2`

`

V2nP~V,t8!dV1E
2`

`

V2n
]P~V,t8!

]t8
dV

522n~2n21!E
2`

`

V2n22P~V,t8!q0~V,t8!dV. ~11!

Using the boundary conditionsP(V,t8)→0 for V→6`,
one integration by parts of the first term on the left-hand s
of Eq. ~11!, and two integrations by parts of the term on t
right-hand side of Eq.~11!, lead to

E
2`

`

V2n
]VP~V,t8!

]V
dV1E

2`

`

V2n
]P~V,t8!

]t8
dV

52E
2`

`

V2n
]2P~V,t8!q0~V,t8!

]V2 dV. ~12!

Since Eq.~12! should hold for any value ofn, it is reason-
able to conclude that

]VP~V,t8!

]V
1

]P~V,t8!

]t8
52

]2P~V,t8!q0~V,t8!

]V2 .

~13!
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5460 55LESLIE M. SMITH AND VICTOR YAKHOT
Equation~13! describes the evolution ofP(V,t8) in a peri-
odic domain, where the only assumption, thus far, is
equivalence of space and ensemble averaging.

B. The short-time approximation

At this point we make the definitive assumption of t
theory, namely, that the explicit time-derivative term on t
left-hand side of Eq.~13! is negligible for short times, lead
ing to

]VP~V,t8!

]V
52

]2P~V,t8!q0~V,t8!

]V2 . ~14!

Direct integration then yields the short-time solution@8#

P~V,t8!5
C~ t8!

q0~V,t8!
expF2E

0

V u du

q0~u,t8!G , ~15!

whereP(V,t8) is a functional ofq0(V,t8). Notice that Eq.
~15! follows directly from Eq. ~6! neglecting the term
]V2n/]t8. In Sec. III we provide a consistency check of t
short-time solution~15! by verifying the relation

U]P~V,t8!

]t8
U!U]VP~V,t8!

]V U ~16!

for early times during the numerical simulation.
To understand the short-time PDF~15!, recall that

q0(V,t8) is the conditional value ofy25(“v)2/(“v)2 for
a given value ofV. If q0(V,t8)'A constant, then Eq.~15!
has the Gaussian form given by P(V,t8)
'(C/A)exp(2V2/2A), whereC5(A/2p)1/2. The normal-
ization constraints~10! require thatA must be equal to unity
and thus we obtain the asymptotic resultq0(V,t8)'A51
for t8→0. Since by isotropyq0(V,t8)5q0(2V,t8), and as-
suming analysticity ofq0(V,t8), one may write

q0~V,t8!5A~ t8!1 (
n51

`

B2n~ t8!V2n, ~17a!

whereA→1 andB2n→0 for small timest8 during the decay
from an initially Gaussian field. As the flow field decays, t
tails of the PDF deviate from the Gaussian solution to
clude larger values ofV ~see Fig. 2!. At first, the term
B(t8)V2 is likely to contribute the largest correction to th
Gaussian solution. Neglecting terms forn>2 and dropping
the subscript fromB2 , we expect

q0~V,t8!;A~ t8!1B~ t8!V2, ~17b!

for t8→0.
Before proceeding to find the coefficientsA andB of the

series expansion forq0(V,t8), we would like to summarize
the previous analysis and to reiterate the physical conten
the short-time solution~15!. Rewriting Eq.~1! in terms of the
normalized vorticityV5v/vrms we have assumed that th
time scalevrms(dvrms/dt)

21 is much smaller than the time sca

2nV2n(]V2n/]t)21, which is a near-Gaussian approxim
tion and constitutes the main assumption of the theory.
troducing ē52vrmsdv rms/dt and the normalized
e

-

of

-

time differentialdt85 ēdt/v2 leads ultimately to the solution
~15! with time dependence entering implicitly throug
q0(V,t8). The quantityq0(V,t8) is governed by an evolu
tion equation that may be derived from the equation for“v
by a sequence of steps similar to those above. Since
advective nonlinearity in the vorticity equation~1! will gen-
erate a term representing the stretching of“v that will not
vanish upon spatial integration over the periodic doma
nonlinear effects also enter Eq.~15! implicitly through
q0(V,t8). Thus time dependence and nonlinearity both en
Eq. ~15! through the higher-order terms in the series exp
sion ~17a! for q0(V,t8). Linear theory corresponds to th
Gaussian solution following fromq0(V,t8)'A51. We will
now find the probability densityP(V,t8) including time de-
pendence and nonlinear effects by retaining the te
B(t8)V2 in the expansion~17!.

C. The series expansion forq0„V,t8…

The dynamical equation forq0(V,t8) contains the full
nonlinearity and time dependence ofq0(V,t8). However,
here we will use instead:~i! the series expansion~17! trun-
cated atB(t8)V2, valid for short times;~ii ! the dynamical
equation~6! for V2n neglecting]V2n/]t8 for consistency
with Eq. ~15!; ~iii ! the three normalization constraints~10!.
As will be shown, these are sufficient to specify the sho
time PDF~15! in closed form without adjustable paramete

To describe the numerical simulations, we use a non
mensional timeT defined by T[* 0

t dt urms(t)kp(t)/p,
whereurms(t) is the root-mean-square velocity,kp(t) is the
wave number of the peak of the energy spectrum, the n
malization factorp is the largest independent length scale
the system and@urms(t)kp(t)/p#21 is an approximate eddy
turnover time associated withurms. As will be discussed in
Secs. III and IV, the numerical data show that there exis
characteristic time scaleT5Tc such that the statistics of th
velocity field are close to Gaussian forT,Tc , with devia-
tions from the Gaussian values building up forT.Tc . Thus
we make the equivalence betweent8→0 andT→T c

1 for the
comparison between the theory and the numerical sim
tions.

As noted above,q0(V,T)'A51 for T,Tc . At larger
timesT.Tc , the tailsuVu@0 of the PDFP(V,T) grow and,
according to Eq. ~17b!, one may write
q0(V,T)'A(T)1B(T)V2 with A(T)→1 andB(T)→0 for
T→T c

1. Using the normalization constraints~10!, one finds

A~T!512B~T!. ~18!

The functionB(T) may be found from the dynamical equa
tion ~6! for V2n. Introducing the notationS2n[V2n, using
Eqs. ~17b! and ~18! for q0(V,t8), and neglecting]V2n/]t8
for consistency with the PDF~15!, one finds from Eq.~6! the
recursion relation

S2n5~2n21!~12B!S2n221~2n21!BS2n . ~19!

Settingn52 and using the normalization constraintS251
@the first constraint~10!# then leads to

B5
1

~S421!

~S423!

3
, ~20!
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which has the required behaviorB(T)→0 as T2Tc→0
sinceS423→0 for T2Tc→0. The short-time recursion re
lation ~19! says that the higher-order momentsS2n for n>3
can be expressed in terms of the flatnessS4 only. Substitut-
ing Eq. ~17b! for q0(V,t) into the PDF~15! gives

P~V,S4!5C~B!„A~B!1B~S4!V
2
…

2@111/2B~S4!#, ~21!

where the parameterC(B) is found from the third normal-
ization constraint~10!. The coefficients of the theoryA(B),
B(S4) andC(B) are given self-consistently by Eq.~6! and
the constraints~10!, and thus the PDF~21! satisfies the defi-
nitionS45* 2`

` P(V,S4)V
4dV. The short-time solution~21!

for the PDF describes the shape of the vorticity probabi
densityP(V,S4) in 2D turbulence decaying from an initiall
Gaussian velocity field in a periodic domain. The limits
validity of Eq. ~21! will be discussed below in detail.

Owing to the near-Gaussian approximation~7! leading to
Eq. ~21!, the explicit time dependence of the coefficients
not given by the theory. However, the time evolution of o
coefficient determines the time evolution of the remain
four coefficients and therefore the PDF itself. In Sec. III w
compare theory and experiment as a function ofS4 , where,
as in Eq.~21!, the time dependence is implicit inS4 . Based
on the numerical simulation data, a model evolution equa
for S4(T) is proposed in Sec. IV to provide a formula for th
explicit time dependence ofP(V,T). The purpose of this
model is to justify the main assumption of the theory
verifying the relation~16! for short timesT2T c

1→0 during
the numerical simulation.

III. COMPARISON TO THE RESULTS
OF DIRECT NUMERICAL SIMULATION

To test the theoretical predictions given above, we h
conducted numerical experiments of decaying 2D tur
lence. The equation of motion~1! was written in terms of a
stream functionc

]v

]t
2

]c

]x1

]v

]x2
1

]c

]x2

]v

]x1
5n¹2v, ~22!

where v52¹2c with u15]c/]x2 and u252]c/]x1 . A
pseudospectral code was used to solve Eq.~22! in a periodic
square at resolutionsN55122 and 10242. As initial condition
in each run, we took a stream functionc0~k! with indepen-
dent Gaussian real and imaginary parts and a velocity s

FIG. 1. Vmax(T)/Vmax(T50) ~crosses!; S4(T)/3 ~solid circles!.
The line is formula~25! with a50.18 andb50.09.
y

n

e
-

c-

trum E0(k) peaked aboutk0 : E0(k)5Ae210(k2k0)
2
with ra-

tios k0/N varying from 0.2 to 0.05. The energy spectru
E(k) is given in terms of c(k) by the relation
E(k)5pk3^c~k!c~2k!&, where the brackets indicate an av
erage over angles. In all cases, we found that deviations fr
Gaussian statistics appeared at timeT5Tc'5 independent
of the value ofk0/N. Apparently, the nondimensional time
scaleT is approximately the correct rescaling of time for
theory of the single-point PDF independent of the initial va
ues of energy, entropy and Reynolds number. The timeTc is
the time for population of modes up to the dissipation wa
numberkd owing to nonlinear interactions.

Here we present the results forN51024, k05100, and
A50.01. We used a variable viscosityn(t)5mvrms(t)/kmax

2

following @9#, wherevrms(t) is the root-mean-square vortic
ity, kmax51024/3 is the dealiasing wave number, andm50.2
is a constant. This avoids temporary resolution problems d
to the high total entropy initially present in the flow. As on
indicator of coherence, we measured the single-point vor
ity flatnessS4 . The time evolution ofS4 is presented in Fig.
1 ~dark circles!, which shows thatS4 departs from the
Gaussian value of three at a timeT5Tc'5. Figure 2
shows the single-point vorticity probability distribution
P„V,S4(T)… as well as the conditional expectatio
q0„V,S4(T)… at four values ofS4 ~increasing times! after the
onset of intermittency. The probability densityP~V,T! was
obtained from the experimental data by counting the poi
N(V) in the vorticity field corresponding to the value ofV
in the interval~V,V1dV!. In this wayP(V,T)5N(V)/N.
Similarly, for a given value V5V1 in the interval
~V1,V11dV!, q0(V1 ,T)5( y2/N(V1) is the sum of the
values ofy2 at each grid point whereV5V1, divided by the

FIG. 2. log10 q0(V) and log10 P(V) vs V at ~a! S453.27 (T
58.7), ~b! S453.72 (T511.8), ~c! S454.35 (T513.8), and~d!
S457.63 (T518.2). Thesolid lines are the theoretical prediction
for q0(V) ~17b!, ~18!, and~20! andP(V) ~21! for the sameS4 as
the experimental PDF, and the dashed line is the Gaussian distr
tion.



.27

.72

.35

.63
.05

5462 55LESLIE M. SMITH AND VICTOR YAKHOT
TABLE I. Maximum and average values ofF2n, n52–4;Vmax; S4 .

T r̄ maxF4 avgF4 maxF6 avgF6 maxF8 avgF8 Vmax S4

8.7 0.086 3.16 3.04 17.59 15.74 144.09 116.19 5.30 3
11.8 0.200 3.11 3.04 16.74 15.71 131.80 115.30 6.19 3
13.8 0.012 3.11 3.02 17.06 15.32 138.88 110.02 7.28 4
18.2 0.012 3.36 3.04 21.48 15.69 217.53 115.7 8.56 7
25.0 0.012 4.26 3.16 46.18 17.72 775.72 151.72 15.33 19
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as
total number of points with V5V1. The interval
2Vmax,V,Vmax was subdivided into approximately 200
bins ~the number of bins increased asVmax increased!.

We have analyzed the moments of vorticityS2n up to
eighth order and found that for the short times@Figs. 2~a! and
2~b!#, the agreement between theory and experiment is
cellent. Somewhat later whenS4'4.3 @Fig. 2~c!#, the tails of
the experimentalq0(V,T) can be seen to depart from th
theoreticalq0(V,T), and the departure increases as time
creases andS4 grows large compared to the Gaussian va
@Fig. 2~d!#. The discrepancy between the theoretical P
~21! and the experimental PDF is expected to grow at
larger times of our simulation.

In a finite system, there is the inevitable lack of a suita
ensemble and uncertainty of the experimental determina
of P(V,T)! when V is large. Thus it is expected that i
higher-resolution systems, the quality of prediction will im
prove even at some what longer times. However, the fi
state (T→`) of decaying 2D turbulence consists of a sm
number of vortices, and thus the PDF description of the fl
based on perturbation from an initial Gaussian state inev
bly becomes invalid. Even at short times the expression~21!
for the PDF is valid only whenV is not too large since
V2n,` was assumed in the derivation of Eq.~21!. This
means that forV→`, P(V,T) must tend to zero much faste
than predicted by Eq.~21!.

In addition to the PDF of vorticity, we also calculated th
normalized even-order moments of the longitudinal veloc
differences F2n(r )5^[Dui(r )]

2n&/^[Dui(r )]
2&n, n51–4,

averaged over space. Table I gives the maximum and a
age values ofF2n(r ) for n52–4 at the same four time
T58.7, 11.8, 13.8, and 18.2 after the onset of intermitten
as in Fig. 2; Fig. 3 shows the fullr dependence ofF8(r ) at
these times.@The behaviors ofF4(r ) andF6(r ) are qualita-
tively similar to that ofF8(r ), but the evolution ofF8(r )
was chosen for presentation because the growth rate
F8(rmin! is the largest.# For reference, recall that the Gaus
ian values areF453, F6515, andF85105. Defining the
displacementr corresponding to the maximum value
F8(r ) to ber̄ , one sees that, for the two earlier timesT58.7
and T511.8, the r̄ is small but larger than the smalle
measured valuermin52p/512'0.012 corresponding to two
grid points. The global maximum ofF8 occurring atr̄ re-
flects clumping of vorticity on the order of this small leng
scale 0.0125rmin,r̄!rmax5p. At the two later times
T513.8 andT518.2, thepresence of small-scale intermi
tency is clearly indicated by a sharp increase of the mom
at the smallest measured scalesrmin50.012 @see Figs. 3~c!,
3~d!, and Table I#. Although the presence of other relativ
x-

-
e
F
e

e
n

al
l

a-

y

r-

y

of

ts

maxima shows that clumping at larger scales may be occ
ring, the dominant concentration of vorticity is evidently a
the smallest scales.

The values of the momentsF2n(rmin! at the smallest mea-
sured scalermin are seen to increase continuously in tim
until for T.12, F2n(rmin! is the maximum value ofF2n(r )
over the entire range ofrmin,r,rmax. After timeT512, the
moments settle down to the Gaussian value at intermed
and large scalesr , showing that there is onlysmall-scale
intermittency in the system. By the timeT518.2, thepeak
values atrmin are significantly larger than Gaussian and th
intermittency is developed, while we can describe the pre
ous times 5,T,14 as the period of the onset of intermit
tency. Table I and Fig. 1 show that this onset is accompan
simultaneously by the growth ofVmax and S4 away from
their initial values. Although vortices are not yet develope
enough for clear visualization, the growth ofVmax suggests
their ensuing presence. In other words, theonsetof coher-
ence is best detected by the statistics. The growth ofVmax is
also seen in Fig. 2, where for all times there exists an e
treme valueVmax such thatP(V,T)50 for uVu.Vmax. The
magnitudes of bothVmax andP~Vmax! grow with time, sug-
gesting a strengthening of the small-scale vorticity patches
well as an increase in their number.

FIG. 3. F8(r ) at the same times as in Fig. 2:~a! T58.7, ~b!
T511.8, ~c! T513.8, and~d! T518.2.



d
ll-
om
ll-
tin
o

th
th
l
of
2
e
t,
a
of
n
rib
or
on
k
is
D

in

n

er
e
e
-

o

we
pro-

s.

-
-

hat

s,

of
sity

to
nce
e-

d in
first
es

ng

55 5463ONSET OF INTERMITTENCY IN TWO-DIMENSIONAL . . .
Finally, Fig. 4 showsF8(r ) at T525.0 to illustrate the
signature of the flow after intermittency is well develope
At this late time, vorticity is highly concentrated at the sma
est scales and clumping at other scales is negligible. By c
parison to Fig. 3~d!, one sees that the width of the sma
scale structures is growing as well as their strength, reflec
the attraction and consumption by the emerging vortices
like-signed vorticity from the background field.

IV. A MODEL FOR THE GROWTH
OF INTERMITTENCY

In this section we present a model for the growth ofS4(T)
based on the results of our numerical simulations and
suggested link between the onset of intermittency and
generation of coherent vortices. The purpose of this mode
to check relation~16! that constitutes the main assumption
the theory presented in Sec. II. According to Figs. 1 and
the early stages of the dynamics of coherent-structure g
eration can be characterized by two distinct regimes. Firs
T'Tc , the nonlinear interaction between the modes of
initially Gaussian velocity field leads to the formation
weak patches of vorticity responsible for small deviatio
from Gaussian statistics. The second stage can be desc
by the following simple model: the strongest emerging v
ticity patches, corresponding to the tails of the distributi
functionP(V,T), grow by subsuming the surrounding wea
excitations having vorticity of the same sign. This is cons
tent with the negative sign of the effective viscosity in 2
turbulence@10# and for 2D arrays of vortices@11#. If we
denote the typical vorticity of these patches asV0(T), then
the rate of depletion of the random background field
creases with increasingV0(T). The growth ofV0(T) in the
strengthening vortices is given by the differential equatio

dV0~T!

dT
'

V0~T!

t0~T!
, ~23!

where all variables are nondimensional, and the charact
tic time scalet0(T) is inversely proportional to the effectiv
diffusivity k(T) of the background field at the scale of th
emerging vortices,t0(T)}1/k(T). Assuming the exponen
tial form exp(2bt) for the time correlation of the velocity
leads to

k~T!}E
0

T

^v~ t8!v~0!&dt8}12exp~2bT! ~24!

FIG. 4. F8(r ) at T525.
.
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where the parameterb reflects the time-lagging effect due t
the finite time required for vortex generation.

During the second stage of the early-time dynamics,
assume that the deviations from Gaussian statistics are
portional to the typical vorticityV0(T) of the emerging vor-
tices, e.g.,S4(T)}V0(T). From this assumption and Eq
~23! and ~24!, one finds

S4~T2Tc!53.0 expFaS T2Tc2
12exp@2b~T2Tc!#

b D G ,
T.Tc ~25!

whereTc'5 is a parameter of the problem. Figure 1 com
pares the model solution~25! with the results of the numeri
cal simulation for the values of the constantsa50.18 and
b50.09. Figure 1 shows that it is indeed the case t
S4(T)}Vmax for T,15 corresponding to Figs. 2~a!–~c!.
SinceVmax is the vorticity of the strongest growing vortice
the short-time PDF~21! and the model~25! for S4(T2Tc)
establish a direct dynamic link between the emergence
coherent structures and the shape of probability den
P(V,T) in decaying 2D turbulence.

Using the kinetic model~25!, q0(V,T) given by Eqs.
~17b!, ~18!, and ~20!, andP(V,T) given by Eq.~21!, one
may check the inequality~16!. It is straightforward to calcu-
late that

]VP~V,T!

]V
52

]2P~V,T!q0~V,T!

]V2 5O„P~V,T!….

~26!

Then since the coefficientsA andC depend onB, and the
coefficientB depends onS4 , one finds

]P~V,T!

]T
5

]P~V,T!

]B

]B

]S4

]S4
]T

5O„„T2Tc)P~V,T!….

~27!

Relations ~26! and ~27! thus verify relation ~16! for
T→T c

1(t8→0). However, the approximation~21! cannot be
valid for the evaluation ofS2n when n→` even at short
times. To illustrate, we rewrite the recursion relation~19! as

S2n~T!5~2n21!S2n22~T!
12B~T!

12~2n21!B~T!
. ~28!

SinceS2n(T)[V2n.0, relation~28! cannot be correct for an
arbitrarily largen, even at short times, whenB(T) is small
but finite. Thus the results of this work are applicable only
low-order moments. This restriction is a direct conseque
of the short-time approximation of neglecting the tim
derivative term in Eq.~6! together with truncation of the
series expansion~17a!.

V. SUMMARY

We have shown that the dynamical processes reflecte
Figs. 1–4 are best described by two stages. During the
period 0,T,Tc , the nonlinear interaction populates mod
up to the dissipation wave numberkd , but the initially
Gaussian velocity field is not substantially distorted. Duri



r
al

o
i
er
re
o
kly
rb
c-
rg

ty
w

le
of
ld
su
-

r

t of

by
of

R

ns.
n-
The
VS

5464 55LESLIE M. SMITH AND VICTOR YAKHOT
the second stage forT2Tc not too large, the even-orde
moments of the velocity differences show that small-sc
intermittency develops, and the tailsuVu@0 of the PDF
P(V,T) grow and change shape. The increasing value
Vmax(t) provides a connection between the onset of interm
tency during the second stage and the emergence of coh
vortices. A self-acceleration process is suggested, whe
larger amplitude vorticity blobs corresponding to the tails
the vorticity PDF begin to dominate the flow: these wea
interacting patches of vorticity attract and subsume nea
like-signed vorticity. They ultimately form coherent stru
tures, and will influence each other and eventually me
only at much later times not reached in our simulations~see
@2–7#!. At these later times we expect the typical vortici
V0 of the vortices and the moments of the vorticity to gro
at a rate slower than exponential.

Consistent with this picture, we have derived the sing
point vorticity PDF valid for short times during the decay
2D turbulence away from an initially Gaussian velocity fie
The theory can be described as weakly nonlinear and re
in the PDFP(V,S4) as a function of the normalized fourth
n

,

e

f
t-
ent
by
f

y,

e

-

.
lts

order momentS4 of the vorticity. All coefficients of
the theory are determined self-consistently withS4
5* 2`

` P(V,S4)V
4dV. Theory and simulations agree fo

small departures ofS4 from the Gaussian valueS453 cor-
responding to short timesT2Tc→0. Together the theory
and simulations establish a link between the developmen
coherent vortices as measured by the growth ofVmax, and
the onset of small-scale intermittency as measured both
the moments of the velocity differences and by the shape
the tails of the vorticity PDF.
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