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Onset of intermittency in two-dimensional decaying turbulence
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The statistics of two-dimensional flow decaying from an initially Gaussian velocity field are investigated
both theoretically and numerically. During the initial stages of the turbulence decay, small-scale intermittency
develops, while the intermediate and large scales remain essentially Gaussian. Corresponding to these early
times, an expression describing the evolution of the shape of the probability dEf8ity,) is derived from
the Navier-Stokes equations, whele= w/w,ys is the normalized vorticity ané, is the normalized fourth-
order moment of the vorticity. Predictions of the theory, which does not involve adjustable parameters, agree
with the results of numerical simulations for the early-time de¢8¢063-651X97)00304-§

PACS numbds): 47.27—i

[. INTRODUCTION decay from an initially Gaussian velocity field. The present
. . . . work is thus different from previous studies dealing with

.Although Progress 1s ongoing, the understanding .Of e uch later stages of the evolution of the flow field, when
mittency from first principles remains one of the major out- 5o the entire vorticity is associated with coherent struc-
standlng_prob_lems in turbulence theory. Intermittency in tl_Jr-tures[G] and[7]. Our numerical data show the simultaneous
bulence is evidenced by scale dependgnce of the normahz%vempmem of small-scale intermittency, as measured by
even-order moments of the velocity differenddd, where,  {he normalized even-order moments of the velocity differ-
for example, the longitudinal velocity difference as a func-ences, and excitations corresponding to the tails of the
tion of the displacement scaler is defined by single-point PDFP(,t). The(also simultaneoysyrowth of
Aui(r)=uj(x+ri)—ui(x). A flow is intermittent if the maximum of vorticity normalized by the root-mean-
([AU(N]P"{[Au(r)]*)" is a function ofr. For turbulent  square value, reflecting a concentration of vorticity, suggests
flows, the normalized even-order moments increase from thehat the physics underlying the onset of intermittency is in-
Gaussian values as the displacementecreases. Intermit- deed the formation of vortices.
tency is also manifested in the probability denditgX) by In Sec. Il we derive the PDF of vorticity in a periodic
very broad tails for large values dfwhenX is a derivative- domain, valid for short times during the decay of 2D turbu-
related variable such as the VOI’tiCiW or dissipation_rate lence from an initially Gaussian velocity field. In Sec. Il we
fluctuationse—e. It is believed that the tails oP(X) are ~ compare the theoretical PDF to the results of high-resolution
dominated by coherent structures. However' in three dimerfjirect numerical simulations. It will be shown that the theory
sions, little is known about the formation of these structures®nd the simulations agree for early times, and the later break-
and their direct effect on the probability densities. down of the theory is discussed. Moments of the velocity

Decaying two-dimensional2D) turbulence is character- differences measured during the simulations are also pre-
ized by the emergence of Coherent Vortices_ A typ|ca| nu.sented in Sec. Il as a direct measure of intel’mittency. Sec-
merical experiment deals with the Navier-Stokes equation§on IV describes a simple kinetic model for the growth of
evo|ving from an initial Conditionv(k’o)’ usua”y corre- |nterm|ttency that is motivated by the results of the numeri-
Sponding to a Gaussian random f|e|d W|th an energy Spe@al Simulation. ThIS mOde| iS Used to Vel’ify the appI’OXima-
trum peaked at some= kO' It has been Convincing|y shown tions employEd in the derivation of the short-time PDF. The
that the energy decay in th|s System is accompanied by thlg'r‘lltatlons of the theory are further discussed in Sec. IV. A
appearance of coherent, long-living vortices that eventuallpummary is given in Sec. V.
dominate the dynamics of the floggee, e.g.[2-5]). Since
coherent vortices cannot exist in a field which is Gaussian at  IIl. THE PROBABILITY DENSITY OF VORTICITY
all scales, their appearance must be accompanied by devia-
tions of the single-point vorticity probability density function
(PDP P(Q,t) from the initial Gaussian distribution. Thus, = To derive an expression for the single-point vorticity
in two dimensions, the formation of coherent vortices isPDF, we apply the formalism developed by Sinai and Ya-
likely to be responsible for the tails of the single-point vor- khot for a passive scal@8] to the vorticity equation in 2D,
ticity PDF P(Q,t) and intermittency.

The present investigation provides some quantitative in- ‘9_‘*’
formation about the onset of intermittency for the case of 2D at
decaying turbulence. In this case, there is an extensive litera- . .
ture on the subject of vortex merger and the long-time dywhereu=uy(x;,X,)i+U,(X1,X,)j, v is the molecular viscos-
namics(e.g.,[6] and[7]). Here the purpose is to investigate ity, the vorticity o=k-(VXu) is a pseudoscalar, ar\d-u=0
the statistical flow properties during the initial stages of thefor incompressible flow. Multiplying Eq(1) by «» and aver-

A. The basic equations

=—u-Vo+rVe, (1)
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aging over the periodic domain, one finds the expression foferm 9Q22"/at’ will be carried through several more steps in
the mean dissipation rate of energy the analysis for the purpose of deriving its corresponding
terms in the equation for the PDF of vorticity.

At this point we introduce the joint PDF
P(Q,y,t")=P(Q,t")q(y|Q,t") and assume equivalence be-
tween space and ensemble averages such that

P
—tE—e=—v(Vco)2, )

N -

where the overbar denotes the spatial averaees w2
and (Vw)?=Vw - Vw. Introducing the normalized vorticity Qn= f” Q"P(O t')dO
O =wlwm,s and using Eq(2), Eq. (1) may be written as — (©,1)aQ, (83

QO __ 90

_ R 2 - o0 [ ,
o € T U vty ® amy?= f_wf_mmyzpm,y,t )dQ dy

We next multiply Eq.(3) by 2nQ2" ! to find %
=f Q"P(Q,t")ge(02,t7)dQ, (8b)

QZn_ &an —©

—2n —— e+ =-2n02""1u. VQ+2nvQ2" V20 . - .
@rms at whereqy(Q,t') is the conditional expectation value w# for
= —U-VO2+ [V202" given 2,

—-2n(2n—-1)Q2"3VQ)?2. (9 qo(ﬂ,t’)=fm y2q(y| .t )dy. )

Defining two additional normalized quantitiesy?
=(Vw)?(Vw)? anddt'=edt/w?, Eq.(4) may be written In addition, we have the normalization relations

as

502" f sz(ﬂ,t’)dﬂ=f | Jo(Q,t")P(Q,t")dQ
— 2n - _ _ 2n-2,,2 —o —»
2nQ "+ o 2n(2n—-1)Q y
2 =J P(Q,t")dQ=1, (10
Wms %

+ 2 ,v2020— .V Q2. (5)

€ where the first and second conditions follow from the defi-
Averaging Eq(5) in space, and using the fact that the secondnitions Q=w/w,,s andy?=(V 0)?/(V w)?, respectively, and
and third terms on the right-hand side vanish for periodicthe third condition follows from the definition of the PDF
boundary conditiongand homogeneous flowdeads to the P({,t"). From the assumption of equivalence between

dynamical equation for the even-order momef' of the ~ space and ensemble averagitg), (8b), Eq. (6) may be
normalized vorticity, written in terms ofP(Q,y,t’) as

a0 . o , o IP(Q,t")
_ZnQZH+ o :_Zn(zn_l)QZH—ZyZ’ (6) _ZnJ,wﬂznP(Q,t )dQ+ J,mﬂzn T dQ

!

where Q2"=w?"/(w?)". The main assumption of the ap-
proximation developed herein is that the second term on the
left-hand side of Eq(6) is small compared to the other two
terms during the initial stages of the turbulence decay fronUsing the boundary conditionB(Q,t’)—0 for Q— =+,
Gaussian statistics, and this assumption will allow us to deene integration by parts of the first term on the left-hand side
rive the short-time PDF of vorticity in closed form without of Eq. (11), and two integrations by parts of the term on the
adjustable parameters. Comparison of E4sand(6) shows  right-hand side of Eq(11), lead to

that this assumption can be stated in dimensional téims

=—2n(2n—1)Jm Q2"72P(Q,t")ge(Q,t)dQ. (12)

verse time scalgsas foc Q2 aQPa((Sl),t’) 40+ jw anap(a?,’t/) 40
1 dwmd 1 90> - -
Wrms dt |> ZnF at |’ (7) * 02P(Q,t,)QO(Qyt,)
=—f Q2" 02 dQ. (12

which is always true fon=1 since?=1 by definition, and

can be justified fon>1 by a near-Gaussian expansion of the since Eq.(12) should hold for any value ofi, it is reason-
moments of(). For a Gaussian field, the odd moments gpje to conclude that

Q21 for n=1 are equal to zero, and the even moments

Q2 for n=1 are constants, for example, the flatn€s$ JQP(Q,t')  IP(Q,t)  FP(Q,)q(Q,t")

=3. Therefore it is plausible thgsQ2"/dt’'|<|2nQ?"| for 0w 902

short times during the decay from Gaussian statistics. The (13
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Equation(13) describes the evolution &?(€,t’) in a peri-  time differentialdt’ = edt/ w? leads ultimately to the solution
odic domain, where the only assumption, thus far, is thg15) with time dependence entering implicitly through

equivalence of space and ensemble averaging. 0o(Q,t"). The quantitygy(£2,t’) is governed by an evolu-
tion equation that may be derived from the equationVar
B. The short-time approximation by a sequence of steps similar to those above. Since the

advective nonlinearity in the vorticity equatigt) will gen-
erate a term representing the stretchingvaé that will not
vanish upon spatial integration over the periodic domain,
nonlinear effects also enter Eql15) implicitly through
go(Q,t"). Thus time dependence and nonlinearity both enter
IQP(Q,t") PP(Q,t)qo(Q,t") Eq. (15 through the higher-order terms in the series expan-
20 =— 202 (14)  sion (173 for go(Q,t"). Linear theory corresponds to the
Gaussian solution following fromy(Q,t")~A=1. We will
now find the probability densit(€2,t’) including time de-
pendence and nonlinear effects by retaining the term

At this point we make the definitive assumption of the
theory, namely, that the explicit time-derivative term on the
left-hand side of Eq(13) is negligible for short times, lead-
ing to

Direct integration then yields the short-time soluti@j

P(O.t") C(t’) F{ fﬂ udu s B(t')Q? in the expansiorf17).
’ = A N exp — 7 ,

Bl o GollLt’) C. The series expansion foigy(L2,t")
whereP(€),t") is a functional ofgy(€2,t'). Notice that Eq. The dynamical equation foge(Q,t") contains the full

(15) follows directly from Eg. (6) neglecting the term nonlinearity and time dependence g§({},t'). However,
Q2" at’. In Sec. lll we provide a consistency check of the here we will use insteadi) the series expansioi?) trun-
short-time solutior(15) by verifying the relation cated atB(t')Q2?, valid for short timesjii) the dynamical
equation(6) for Q°" neglectingdQ?"/at’ for consistency
with Eq. (15); (iii) the three normalization constraints0).
As will be shown, these are sufficient to specify the short-
time PDF(15) in closed form without adjustable parameters.
for early times during the numerical simulation. To describe the numerical simulations, we use a nondi-
To understand the short-time PDELS), recall that mensional timeT defined by T=[4d7 Umd T)kp(7)/,
0o(2,t") is the conditional value of?=(Vw)?/(Vw)? for ~ Whereuq,{t) is the root-mean-square velocitl,(t) is the
a given value of). If qo(Q,t')~A constant, then Eq15)  Wwave number of the peak of the energy spectrum, the nor-
has the Gaussian form given by P(Q,t) malization factorr is the largest independent length scale in
~(CIA)exp(— Q2/2A), where C=(A/2m)Y2 The normal- the system an@u,,{ 7)ky(7)/«] * is an approximate eddy

ization constraint$10) require thatA must be equal to unity, turnover time associated witlyys. As will be discussed in
and thus we obtain the asymptotic resgi(Q,t')~A=1  Secs. lll and IV, the numerical data show that there exists a

for t’ —0. Since by isotropyy(Q,t')=qgo(—Q,t'), and as- characteristic time scalé=T, such that the statistics of the

‘aP(Q,t’)

IOP(Q,t")
<
at' |

O (16)

suming analysticity ofjo(£2,t’), one may write velocity field are close to Gaussian fo< T, with devia-
tions from the Gaussian values building up foxT.. Thus
* we make the equivalence betwetér-0 andT— T for the
Qo(Q,t")y=A(t")+ 21 B,n(t")Q2", (179 comparison between the theory and the numerical simula-
n= tions.

As noted aboveqy(Q2,T)=A=1 for T<T.. At larger
timesT>T_, the tails|Q|>0 of the PDFP({,T) grow and,
according to Eq. (17b, one may  write
qo(Q,T)=A(T) +B(T)Q? with A(T)—1 andB(T)—0 for
T—T{Z. Using the normalization constraint$0), one finds

whereA—1 andB,,—0 for small timest’ during the decay
from an initially Gaussian field. As the flow field decays, the
tails of the PDF deviate from the Gaussian solution to in-
clude larger values of) (see Fig. 2 At first, the term
B(t')Q? is likely to contribute the largest correction to the
Gaussian solution. Neglecting terms for2 and dropping A(T)=1-B(T). (18)
the subscript fronB,, we expect
The functionB(T) may be found from the dynamical equa-

Go(,t")~A(t") +B(t)Q?, (I7H  tion (6) for Q2. Introducing the notatiors,,=02", using
Egs.(17b and (18) for go(2,t’), and neglecting’Q>"/ ot’
for consistency with the PDA5), one finds from Eq(6) the
recursion relation

fort'—0.

Before proceeding to find the coefficierisandB of the
series expansion fay,(€2,t"), we would like to summarize
the previous analysis and to reiterate the physical content of —(2n—-1)(1-B +(2n—-1)BS,. . 19
the short-time solutiofiL5). Rewriting Eq.(1) in terms of the San=( 3 JSan-2+( JBS. (19
normalized vorticity )= w/wy,s we have assumed that the Settingn=2 and using the normalization constraf=1
time scalew;pgdo,,Jdy~1 is much smaller than the time scale [the first constraint10)] then leads to
2nQ2" (902 gt) 1, which is a near-Gaussian approxima-
tion and constitutes the main assumption of the theory. In- 1 ($=3) (20)

troducing e=—w,do,ddt and the normalized =(S4—1) 3
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which has the required behavi®d(T)—0 as T—T.—0
sinceS,—3—0 for T—T,—0. The short-time recursion re-
lation (19) says that the higher-order momegs, for n=3
can be expressed in terms of the flatn8g®nly. Substitut-
ing Eq. (17b) for go(Q,t) into the PDF(15) gives

log, P and log, q, Vs Q

P(Q,S,)=C(B)(A(B)+B(S,) Q%) 1" V21, (21)

where the parameteZ(B) is found from the third normal-
ization constrain{10). The coefficients of the theor(B),
B(S,;) andC(B) are given self-consistently by E¢6) and
the constraint$10), and thus the PDR21) satisfies the defi-
nition S,= [ “.P(Q,S,)Q*dQ. The short-time solutiof21)

for the PDF describes the shape of the vorticity probability
densityP(Q,S,) in 2D turbulence decaying from an initially
Gaussian velocity field in a periodic domain. The limits of
validity of Eq. (21) will be discussed below in detalil.

Owing to the near-Gaussian approximati@h leading to
Eq. (21), the explicit time dependence of the coefficients is
not given by the theory. However, the time evolution of one
coefficient determines the time evolution of the remaining AT
four coefficients and therefore the PDF itself. In Sec. Ill we -5 0 5
compare theory and experiment as a functiorSpf where, (c) 8, = 4.35
as in Eq.(21), the time dependence is implicit B,. Based 3
on the numerical simulation data, a model evolution equation 8':7';3' (s)' g’%% q;’éﬂa)__a:g gla(;g(oc )Péﬂ_) ‘:’Z él(?t—(?)ssg)_séig (g

1 i 1 - . 1 4 * - * 1 4 . - N !
f;(rpﬁ?;(inigepz)ggesr?gelgcieg#é\(/)t?')pr(%\ﬂgepirgcr)?:I?)ff(i;]itge S,=7.63 (T=18.2). Thesolid lines are the theoretical predictions
model is to justify the main as’sur.nption of the theory byfor do(€2) (17b), (18), and(20) andP(Q) (21) for the sameS, as

s ; . T : the experimental PDF, and the dashed line is the Gaussian distribu-
verifying the relation(16) for short timesT—T . —0 during tion
the numerical simulation. '

trum Eo(k) peaked abouk,: Eq(k) =Ae 10k—k0” with ra-
. COMPARISON TO THE RESULTS tios ko/A varying from 0.2 to 0.05. The energy spectrum

OF DIRECT NUMERICAL SIMULATION E(k) is given in terms of (k) by the relation
E(k) = mk3((k){—k)), where the brackets indicate an av-
To test the theoretical predictions given above, we haverrage over angles. In all cases, we found that deviations from
conducted numerical experiments of decaying 2D turbuGaussian statistics appeared at tifie T,~5 independent
lence. The equation of motiofl) was written in terms of a of the value ofky/A. Apparently, the nondimensional time

stream functiony scaleT is approximately the correct rescaling of time for a
theory of the single-point PDF independent of the initial val-

do Y do Y dw ) ues (_)f energy, entropy and Reynolds numbe_r. 'I_'he _ﬂ'mis
X, 9%y | Xy Xy oo, (22)  the time for population of modes up to the dissipation wave

numberk, owing to nonlinear interactions.

Here we present the results faf=1024, k,= 100, and
A=0.01. We used a variable viscositft) = uwymdt)/Kzax
following [9], wherew,,{t) is the root-mean-square vortic-
ity, Kmax=1024/3 is the dealiasing wave number, and0.2
is a constant. This avoids temporary resolution problems due
% the high total entropy initially present in the flow. As one
indicator of coherence, we measured the single-point vortic-
ity flatnessS,. The time evolution of5, is presented in Fig.

1 (dark circleg, which shows thatS, departs from the
Gaussian value of three at a timE=T.~5. Figure 2
shows the single-point vorticity probability distribution
P(Q,5,(T)) as well as the conditional expectation
0o(€2,S,4(T)) at four values of5, (increasing timesafter the
onset of intermittency. The probability densiB((2,T) was
obtained from the experimental data by counting the points
N(Q) in the vorticity field corresponding to the value &f

in the interval(Q,Q2+&Q2). In this way P(Q,T)=N(Q)/N.
Similarly, for a given value 3=, in the interval

FIG. 1. Quaf T)/ Qe T=0) (crossel S,(T)/3 (solid circles.  (Q1,Q;+8Q), qo(Q;,T)== y?N(Q,) is the sum of the
The line is formula(25) with «=0.18 andB=0.09. values ofy? at each grid point wher®={0),, divided by the

where w=—V2) with u;=dyldx, and u,=—dylx,. A
pseudospectral code was used to solve(E8).in a periodic
square at resolution§=512 and 1024. As initial condition
in each run, we took a stream functigg(k) with indepen-
dent Gaussian real and imaginary parts and a velocity spe

I |

30
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TABLE |. Maximum and average values &k, N=2—4; Qax; Sa-

T T max F4 avgF, max Fg avgFg max Fg avgFg Qpax Sy

8.7 0.086 3.16 3.04 17.59 15.74 144.09 116.19 5.30 3.27
11.8 0.200 3.11 3.04 16.74 15.71 131.80 115.30 6.19 3.72
13.8 0.012 3.11 3.02 17.06 15.32 138.88 110.02 7.28 4.35
18.2 0.012 3.36 3.04 21.48 15.69 217.53 115.7 8.56 7.63
25.0 0.012 4.26 3.16 46.18 17.72 775.72 151.72 15.33 19.05

total number of points with Q=,;. The interval maxima shows that clumping at larger scales may be occur-
=072 0<Q,.« Was subdivided into approximately 2000 ring, the dominant concentration of vorticity is evidently at
bins (the number of bins increased 83,,, increased the smallest scales.

We have analyzed the moments of vorticly, up to The values of the momenEs,(r ;) at the smallest mea-
eighth order and found that for the short tinifigs. 4a) and ~ sured scale,, are seen to increase continuously in time
2(b)], the agreement between theory and experiment is exntil for T>12, Fn(r in) is the maximum value of 5,(r)
cellent. Somewhat later whey~4.3[Fig. 2c)], the tails of ~ OVer the entire range of,,<r <rpq,. AftertimeT=12, the
the experimentably(€2,T) can be seen to depart from the Moments settle down to the Gaussian value at intermediate
theoreticalgy(Q2,T), and the departure increases as time in-2Nd 1arge scales, showing that there is onlgmall-scale
creases an®, grows large compared to the Gaussian valud"termittency in the system. By the timie=18.2, thepeak

[Fig. 2d)]. The discrepancy between the theoretical PDFyaIues ar i, are significantly larger than Gaussian and the

: A ntermittency is developed, while we can describe the previ-
gze?r:i?n?seo?épﬁr!?rﬁBgic?nDF Is expected to grow at théous times 5XT<14 as the period of the onset of intermit-

- . L . ncy. Table | and Fig. 1 show that this onset i mpani
In a finite system, there is the inevitable lack ofaswtablete cy. Table | and Fig. 1 show that this onsetis accompanied

: . .- 5simultaneously by the growth df,,,, and S, away from
ensemble and uncertainty of the experimental determinatiogy, oiy jnitia| vaiues. Although vortices are not yet developed
of P(Q,T)) when () is large. Thus it is expected that in

i ! ] i @t "' enough for clear visualization, the growth ©f,,, suggests
higher-resolution systems, the quality of prediction will im- ieir ensuing presence. In other words, tmesetof coher-

prove even at some what longer times. However, the finagnce is best detected by the statistics. The growtf,gf; is
state T—c) of decaying 2D turbulence consists of a small 5o seen in Fig. 2, where for all times there exists an ex-
number of vortices, and thus the PDF description of the flowreme valueQ),,,, such thatP(Q,T)=0 for |Q|>Q,,,,. The
based on perturbation from an initial Gaussian state inevitamagnitudes of botlf),,., and P(Q,,,,) grow with time, sug-

bly becomes invalid. Even at short times the expres&@dh  gesting a strengthening of the small-scale vorticity patches as
for the PDF is valid only wher) is not too large since well as an increase in their number.

0%"< was assumed in the derivation of E@1). This
means that fof)—c, P(€,T) must tend to zero much faster
than predicted by Eq21).

In addition to the PDF of vorticity, we also calculated the
normalized even-order moments of the longitudinal velocity
differences Fo,(r)={([Au;(r)]1>"/{[Au;(r)]?", n=1-4, [
averaged over space. Table | gives the maximum and aver- 120
age values of~,,(r) for n=2-4 at the same four times
T=8.7, 11.8, 13.8, and 18.2 after the onset of intermittency
as in Fig. 2; Fig. 3 shows the futl dependence dfg(r) at
these times[The behaviors of ,(r) andFg(r) are qualita- P PPy E——
tively similar to that of Fg(r), but the evolution ofFg(r) (a) T=8.7 ' (o) T=11.8
was chosen for presentation because the growth rate of
Fg(rmin) is the largesi. For reference, recall that the Gauss- LEBEEREERRRRRRRRE I I I
ian values ard=,=3, Fg=15, andFg=105. Defining the 140 +
displacementr corresponding to the maximum value of
Fg(r) to ber, one sees that, for the two earlier tinies 8.7 L
and T=11.8, ther is small but larger than the smallest 120 -
measured value;,=27/512~0.012 corresponding to two
grid points. The global maximum dfg occurring atr re-
flects clumping of vorticity on the order of this small length

Favsr

LI I B I B A S LA LI R L B L B

140 —

120

[

100 100

200

150

[ BRI BT wor, o S

P I RN

100 -

scale 0.012=r ., <r <r = At the two later times U E— o Tos 1 Tis
T=13.8 andT=18.2, thepresence of small-scale intermit- (c) T=13.8 (d) T=18.2

tency is clearly indicated by a sharp increase of the moments

at the smallest measured scafgs,=0.012[see Figs. &), FIG. 3. Fg(r) at the same times as in Fig. &) T=8.7, (b)

3(d), and Table ]. Although the presence of other relative T=11.8,(c) T=13.8, and(d) T=18.2.
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800 where the parameteg reflects the time-lagging effect due to
the finite time required for vortex generation.

During the second stage of the early-time dynamics, we
assume that the deviations from Gaussian statistics are pro-
portional to the typical vorticitf),(T) of the emerging vor-
tices, €.9.,54(T)xQy(T). From this assumption and Egs.

(23) and(24), one finds

600

200

SHT—To)=3.0 ex;MT—TC— 1_exq_B(T_T°)]”,

B
FIG. 4. Fg(r) at T=25. T>T. (25
C

Finally, Fig. 4 showsFg(r) at T=25.0 to illustrate the whereT ~5 is a parameter of the problem. Figure 1 com-
signature of the flow after intermittency is well developed.pares the model solutiof25) with the results of the numeri-
At this late time, vorticity is highly concentrated at the small- cal simulation for the values of the constanis0.18 and
est scales and clumping at other scales is negligible. By com3=0.09. Figure 1 shows that it is indeed the case that
parison to Fig. &), one sees that the width of the small- S,(T) <, for T<15 corresponding to Figs.(@—(c).
scale structures is growing as well as their strength, reflectin§ince(),,,« is the vorticity of the strongest growing vortices,
the attraction and consumption by the emerging vortices othe short-time PDR21) and the mode(25) for S,(T—T,)
like-signed vorticity from the background field. establish a direct dynamic link between the emergence of
coherent structures and the shape of probability density
P(Q,T) in decaying 2D turbulence.

Using the kinetic model25), qo({2,T) given by Egs.
(17b), (18), and (20), and P(Q2,T) given by Eq.(21), one

In this section we present a model for the growttSgfT) may check the inequalit{16). It is straightforward to calcu-
based on the results of our numerical simulations and théate that
suggested link between the onset of intermittency and the )
generation of coherent vortices. The purpose of this model is JQP(Q,T) __ 9°P(Q,T)qo(Q2,T) —0(P(Q,T))
to check relation(16) that constitutes the main assumption of a0 90° o
the theory presented in Sec. II. According to Figs. 1 and 2, (26)
the early stages of the dynamics of coherent-structure gen- . .
eration can be characterized by two distinct regimes. First, at"en since the coefficien® and C depend orB, and the
T~T., the nonlinear interaction between the modes of arf0efficientB depends or§,, one finds
initially Gaussian velocity field leads to the formation of

IV. A MODEL FOR THE GROWTH
OF INTERMITTENCY

weak patches of vorticity responsible for small deviations oP(Q,T) - oP.T) E&_&:O((T_TC)P(Q’T)).
from Gaussian statistics. The second stage can be described 9T B 9S4 JT
by the following simple model: the strongest emerging vor- (27)

ticity patches, corresponding to the tails of the dlsmbunonRelations (26) and (27) thus verify relation (16) for

function P(Q2,T), grow by subsuming the surrounding weak fror L
excitations having vorticity of the same sign. This is consis—T_>TC (t'~0). However, the approximatio{21) cannot be

tent with the negative sign of the effective viscosity in 2D Va“d for the evaluation OB?" when n—c even at short
turbulence[10] and for 2D arrays of vortice§11]. If we times. To illustrate, we rewrite the recursion relatid®) as
denote the typical vorticity of these patches(gT), then 1-B(T)

the rate of depletion of the random background field in- Szn(T):(Zn—l)SZn—z(T)m- (28

creases with increasin@ y(T). The growth ofQ),(T) in the

strengthening vortices is given by the differential equation _. — .
g g g y d SinceS,, (T)=02">0, relation(28) cannot be correct for an

arbitrarily largen, even at short times, wheB(T) is small
dQo(T) - Qo(T) (23) but finite. Thus the results of this work are applicable only to
daT 7o(T) "’ low-order moments. This restriction is a direct consequence
of the short-time approximation of neglecting the time-
where all variables are nondimensional, and the characteriélerivative term in Eq.(6) together with truncation of the
tic time scalery(T) is inversely proportional to the effective S€rl€s expansioflL7a.
diffusivity «(T) of the background field at the scale of the

emerging vorticesgo(T)«1/k(T). Assuming the exponen- V. SUMMARY
tial form exp(— Bt) for the time correlation of the velocit . .
leads to Pt A y We have shown that the dynamical processes reflected in

Figs. 1-4 are best described by two stages. During the first
period O<T<T_, the nonlinear interaction populates modes

K(T)OCfT<U(t,)v(0)>dt'O<1—eX[X—BT) (24) up to the dissipation wave numbdg, but the initially
0 Gaussian velocity field is not substantially distorted. During
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the second stage fof —T. not too large, the even-order order momentS, of the vorticity. All coefficients of
moments of the velocity differences show that small-scaléhe theory are determined self-consistently wit§,
intermittency develops, and the tail€)>0 of the PDF =["_P(Q,S,)Q*dQ. Theory and simulations agree for
P(Q,T) grow and change shape. The increasing value ofmall departures 08, from the Gaussian valug§,=3 cor-
Ona{t) provides a connection between the onset of intermitresponding to short time¥—T,—0. Together the theory
tency during the second stage and the emergence of cohereaid simulations establish a link between the development of
vortices. A self-acceleration process is suggested, wherelgoherent vortices as measured by the growttgf,, and
larger amplitude vorticity blobs corresponding to the tails ofthe onset of small-scale intermittency as measured both by
the vorticity PDF begin to dominate the flow: these weaklythe moments of the velocity differences and by the shape of
interacting patches of vorticity attract and subsume nearbythe tails of the vorticity PDF.
like-signed vorticity. They ultimately form coherent struc-
tures, and will mflqence each other .and evgntual!y merge ACKNOWLEDGMENTS
only at much later times not reached in our simulati¢see
[2-7]). At these later times we expect the typical vorticity The authors gratefully acknowledge the support of ONR
Q, of the vortices and the moments of the vorticity to grow through Contract Nos. ONR N00014-94-1-01@4 Smith)
at a rate slower than exponential. and ONR N00014-92-J-136@/. Yakhot). Eric Jackson has
Consistent with this picture, we have derived the single-contributed to this work through many valuable suggestions.
point vorticity PDF valid for short times during the decay of L. Smith would also like to thank Fabian Waleffe, Ira Bern-
2D turbulence away from an initially Gaussian velocity field. stein, and Katepalli Sreenivasan for helpful discussions. The
The theory can be described as weakly nonlinear and resultmputations were performed on the 32-processor IBM PVS
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